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Abstract
We study the regularity at the positions of the (fixed) nuclei of solutions to (non-
relativistic) multiconfiguration equations (including Hartree–Fock) of Coulomb
systems. We prove the following: let {ϕ1, . . . , ϕM} be any solution to the
rank-M multiconfiguration equations for a molecule with L fixed nuclei at
R1, . . . , RL ∈ R

3. Then, for any j ∈ {1, . . . ,M}, k ∈ {1, . . . , L}, there exists
a neighborhood Uj,k ⊆ R

3 of Rk , and functions ϕ
(1)
j,k, ϕ

(2)
j,k , real analytic in Uj,k ,

such that

ϕj (x) = ϕ
(1)
j,k(x) + |x − Rk|ϕ(2)

j,k(x), x ∈ Uj,k.

A similar result holds for the corresponding electron density. The proof uses
the Kustaanheimo–Stiefel transformation, as applied in [9] to the study of
the eigenfunctions of the Schrödinger operator of atoms and molecules near
two-particle coalescence points.
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1. Introduction and results

We consider the Hamiltonian of a molecule with N non-relativistic electrons and L (static)
nuclei of (positive) charges Z1, . . . , ZL, fixed at R1, . . . , RL ∈ R

3, given by

H = H(N,Z) =
N∑

j=1

{−�j + V (xj )
}

+
∑

1�i<j�N

1

|xi − xj | , (1)

V (x) = −
L∑

k=1

Zk

|x − Rk| . (2)

Here, xj ∈ R
3 is the coordinate of the j th electron and �j is the Laplacian with

respect to xj . The operator H acts on a dense subspace of the N-particle Hilbert space
HF = ∧N

i=1 L2(R3; C
q) of antisymmetric functions, where q is the number of spin states.

More precisely, its operator domain is D(H) = ∧N
i=1 W 2,2(R3; C

q) and its quadratic form
domain is Q(H) = ∧N

i=1 W 1,2(R3; C
q) [16, 27]. Since the spin is irrelevant for the discussion

in this paper, we let q = 1 from now on to simplify notation. In the case most relevant for
physics, namely electrons in a molecule, q takes the value 2.

Let q be the quadratic form defined by H, that is, for � ∈ D(H), q(�,�) = 〈�,H�〉.
Then, for � ∈ Q(H), (with X = (x1, . . . , xN) ∈ R

3N ),

q(�,�) =
N∑

j=1

∫
R

3N

|∇j�(X)|2 dX +
∫

R
3N

⎧⎨
⎩

N∑
j=1

V (xj ) +
∑

1�i<j�N

1

|xi − xj |

⎫⎬
⎭ |�(X)|2 dX.

(3)

Here, ∇j is the gradient with respect to xj and 〈· , ·〉 is the scalar product in HF ⊂ L2(R3N).
The quadratic form q is bounded from below. The quantum ground-state energy is the infimum
of this quadratic form:

EQM(N,Z) := inf σHF
(H)

= inf{q(�,�)|� ∈ Q(H), 〈�,�〉 = 1}. (4)

The Euler–Lagrange equation for the minimization problem (4) is nothing but the
(stationary) Schrödinger equation,

H� = Eψ, � ∈ D(H), (5)

with E ≡ EQM(N,Z). A ground state of the atom is a solution to (5) for E = EQM(N,Z);
excited states of the atom are solutions to (5) with E > EQM(N,Z). Zhislin [29] proved
the existence of both ground states and (infinitely many) excited states, when the total charge
Z = ∑L

k=1 Zk satisfies N < Z + 1 (see also [11]). In particular, in this case the infimum in (4)
is attained, i.e., minimizers exist. On the other hand, Lieb [21, 22] proved that if minimizers
exist, then N < 2Z + L.

Since, in practice (i.e., numerically), solving (4), or (5), is unfeasible for even relatively
small N, various approximations to the problem (4) have been developed; for a comprehensive
discussion of approximations in quantum chemistry and an extensive literature list, we refer to
[18, 19]. We will not discuss the problems (4)–(5) further in this paper, but rather investigate
(in the spirit of [9]) the solutions to the Euler–Lagrange equations for one of the most used
approximations: the multiconfiguration self-consistent field method (MC-SCF) (including
Hartree–Fock theory). We now discuss this in more detail.
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In the perhaps most well-known approximation, the Hartree–Fock approximation, instead
of minimizing the functional q in the entire (linear) N-particle space HF (or rather, Q(H)), one
restricts to wavefunctions � which are pure wedge products, also called Slater determinants:

�(x1, . . . , xN) = 1√
N !

det(ui(xj ))
N
i,j=1 ≡ |u1 . . . uN 〉(x1, . . . , xN), (6)

with {ui}Ni=1 ⊂ W 1,2(R3), orthonormal in L2(R3) (called orbitals). Note that this way,
� ∈ HF and ‖�‖L2(R3N ) = 1.

The Hartree–Fock ground-state energy is the infimum of the quadratic form q defined by
H over such Slater determinants,

EHF(N,Z) := inf{q(�,�)|� ∈ SN }, (7)

SN = {� = | u1 . . . uN 〉 | ui ∈ W 1,2(R3), (ui, uj ) = δij }, (8)

where (·, ·) is the scalar product in L2(R3). Clearly, EHF(N,Z) � EQM(N,Z). In fact, strict
inequality holds [17]. Inserting � of the form in (6) into (3) yields

EHF(u1, . . . , uN) := q(�,�)

=
N∑

j=1

∫
R

3

{|∇uj (x)|2 + V (x)|uj (x)|2} dx

+
∫

R
3

∫
R

3

ρ(x)ρ(y)

|x − y| dx dy −
∫

R
3

∫
R

3

|γ (x, y)|2
|x − y| dx dy, (9)

where ρ is the density and γ is the density matrix of �, given by

γ (x, y) =
N∑

i=1

ui(y)ui(x), ρ(x) = γ (x, x) =
N∑

i=1

|ui(x)|2. (10)

With EHF defined this way, the minimization problem (7)–(8) can be formulated as

EHF(N,Z) = inf{EHF(u1, . . . , uN)|(u1, . . . , uN) ∈ MN }, (11)

MN = {(u1, . . . , uN) ∈ [W 1,2(R3)]N | (ui, uj ) = δij }. (12)

Both the energy functional EHF and the space MN are nonlinear, but the orbitals {ui}Ni=1
depend only on x ∈ R

3, whereas � in (4) depends on X ∈ R
3N . It is this reduction in the

dimension of the variables which makes the problem (11)–(12) more tractable in practice (i.e.,
numerically) than (4).

The existence of minimizers (again, when Z > N − 1) for the problem (11)–(12) (these
are not unique since EHF is not convex; see also below) was first proved by Lieb and Simon
[23]. The Euler–Lagrange equations of the problem (11)–(12) are the Hartree–Fock equations
(HF equations),

(−� + V )ϕi(x) +

⎛
⎝ N∑

j=1

∫
R

3

|ϕj (y)|2
|x − y| dy

⎞
⎠ ϕi(x) −

N∑
j=1

(∫
R

3

ϕj (y)ϕi(y)

|x − y| dy
)

ϕj (x)

= εiϕi(x), 1 � i � N. (13)

Here, the εi’s are the Lagrange multipliers of the orthonormality constraints in (12). Note
that the naive Euler–Lagrange equations are more complicated than (13), but since both the
functional EHF in (9) and the orthogonality constraints in (12) are invariant under unitary
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transformations (i.e., if (u1, . . . , uN) ∈ MN and (ũ1, . . . , ũN ) = U(u1, . . . , uN) for U an
N × N unitary matrix, then EHF(ũ1, . . . , ũN ) = EHF(u1, . . . , uN) and (ũ1, . . . , ũN ) ∈ MN ),
the matrix of Lagrange multipliers due to (12) may be diagonalized without loss of generality,
which turns the Euler–Lagrange equations into (13).

In [23] it was also proved that if (ϕ1, . . . , ϕN) ∈ MN is a minimizer of the problem (11)–
(12), then {ϕ1, . . . , ϕN } satisfies (13); they are called ground-state solutions of (13). Lions
[24] proved (also for Z > N − 1) the existence of saddle points, namely, an infinite sequence
{ϕn}n∈N = {{ϕn

1 , . . . , ϕn
N }}

n∈N
of solutions of (13). (We refer to [20] for a discussion of the

relationship between these saddle points and the earlier mentioned excited states.) Note that
(13) can be re-formulated as

hϕϕi = εiϕi, 1 � i � N, (14)

with hϕ being the Hartree–Fock operator associated with ϕ = {ϕ1, . . . , ϕN }, given by

hϕu = ( − � + V )u + Rϕu − Kϕu, (15)

where V is given by (2), Rϕu is the direct interaction, given by the multiplication operator
defined by

Rϕ(x) :=
N∑

j=1

∫
R

3

|ϕj (y)|2
|x − y| dy, (16)

and Kϕu is the exchange term, given by the integral operator

(Kϕu)(x) =
N∑

j=1

(∫
R

3

ϕj (y)u(y)

|x − y| dy

)
ϕj (x). (17)

The equations (14) are called the self-consistent Hartree–Fock equations. If � is a minimizer
for the problem (7)–(8), then � can be written as � = |ϕ1 . . . ϕN 〉 with the ϕi’s solving (14),
with ε1 � ε2 � · · · � εN < 0 being the N lowest eigenvalues of the operator hϕ [23].

Remark 1.1. We note that Hartree originally [13] studied the simpler equations

(−� + V )ϕi(x) +

⎛
⎝∑

j �=i

∫
R

3

|ϕj (y)|2
|x − y| dy

⎞
⎠ ϕi(x) = εiϕi(x), 1 � i � N, (18)

called the Hartree equations (H equations). He derived these without going through a
minimization in the variational principle, a refinement which is due to Slater [28]: ignoring
the Pauli principle, (18) are the Euler–Lagrange equations for minimizing the functional

EH (u1, . . . , uN) = q(�,�) (19)

(with q as in (3)) over wavefunctions � of the form

�(x1, . . . , xN) =
N∏

i=1

ui(xi ), ui ∈ W 1,2(R3). (20)

Fock [5] and Slater [28] then independently realized how to introduce the Pauli principle (by
using �’s of the form in (6)), which led to the Hartree–Fock equations in (13).

In the multiconfiguration self-consistent field method (MC-SCF) one aims to recover
more generality on the wavefunction � by minimizing q(�,�) in (3) on finite sums of Slater
determinants (see (6)) instead of only on a single Slater determinant as in Hartree–Fock theory.
More precisely, for M � N,M,N ∈ N, the set of admissible wavefunctions is limited to �’s
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which are linear combinations of Slater determinants of length N, built out of M orbitals. The
minimization problem then becomes

EMCSCF
M (N,Z) = inf

{
q(�,�)

∣∣ � ∈ SM
N

}
, (21)

SM
N =

{
� =

∑
I={i1<i2<···<iN }⊂{1,...,M}

cI | ui1 . . . uiN 〉 | ui ∈ W 1,2(R3),

(ui, uj ) = δij , cI ∈ C,
∑

I

|cI |2 = 1

}
. (22)

Note that SN = SN
N ⊂ SM

N ,M � N (see (8)). Also, clearly

EHF(N,Z) = EMCSCF
N (N,Z) � EMCSCF

M (N,Z) � EQM(N,Z). (23)

In fact, strict inequality holds also in the last inequality [12].
One can express the energy q(�,�) for � ∈ SM

N as a (nonlinear) functional of the cI ’s
and the ui’s (see [20, (6)]), but since this is somewhat complicated and immaterial for our
discussion, we shall refrain from doing so here.

The existence of minimizers (provided Z > N −1) for the problem (21)–(22) was proved
by Friesecke [11] (and for a related case by Le Bris [17]). The corresponding Euler–Lagrange
equations, called the multiconfiguration equations (MC equations), are

γi(−� + V )ϕi +
M∑

j,k,�=1

(
Aijk�

∫
R

3

ϕk(y)ϕ�(y)

|x − y| dy

)
ϕj =

M∑
j=1

λijϕj , 1 � i � M, (24)

∑
J={j1<j2<···<jN }⊂{1,...,M}

HIJ cJ = EcI , I = {i1 < i2 < · · · < iN } ⊂ {1, . . . ,M}. (25)

The first equation (24) is a system of M nonlinear partial differential equations. They are
the Euler–Lagrange equations for the ϕi’s . Here, the coefficients γi > 0 and Aijk� ∈ C are
explicit functions of the cI ’s, and the λij ’s are the Lagrange multipliers of the orthonormality
constraints on the ϕi’s in (22). The second equation (25) is an eigenvalue problem—the
Euler–Lagrange equations for cI . Here, the coefficients HIJ in the equations for the cI ’s are
explicit functions of the ϕi’s, and E is the Lagrange multiplier of the normalization condition
for the cI ’s in (22). The details of this are immaterial for our discussion; we refer to [20, 11].
For a derivation of these equations, see [11, appendix 1].

As in the case of the Hartree–Fock equations, equations (24) and (25) can be written in a
more compact form as

((−� + V ) + W�) · � = � · �, (26)

H� · c = Ec, (27)

where � = (ϕ1, . . . , ϕM)T and c = (cI ) ∈ R(M

N). Here, � = (λij )1�i,j�M , and  and W� are
M × M matrices ( constant, W� dependent on x ∈ R

3), given in terms of the γi’s and the
Aijk�’s in (24) and (25). Again, we refer to [20] for more details.

The existence of saddle points, i.e., an infinite sequence

{cn, ϕ, ϕ, ϕn}n∈N = {
(cI )n; {ϕn

1 , . . . , ϕn
M}}

n∈N

of solutions to (24) and (25) was proved by Lewin [20] (again, provided Z > N − 1).
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A natural mathematical question is to study the regularity properties of solutions to the
multiconfiguration equations (including the Hartree–Fock equations). However, this question
is also of practical interest, since regularity properties of the solutions have influence on the
convergence properties of various numerical schemes. We refer to [18, 19] for discussions on
this.

It was proved in [23, theorem 3.2] that if ϕ = {ϕ1, . . . , ϕN } is a solution of the Hartree–
Fock equations (14), then the ϕi’s are globally Lipschitz continuous, i.e., ϕi ∈ C0,1(R3). This
also holds for solutions to the Hartree equations [23, theorem 3.1] (see also [23, remarks (4),
p 192]). The proof readily extends to solutions of the multiconfiguration equations. Note also
that it was proved in [24] (for HF) and in [20] (for MC) that the ϕi’s belong to W 2,p(R3) for
all p ∈ [2, 3) and consequently, by the Sobolev inequality [2, theorem 6 (ii)], to Cα(R3) for
all α ∈ (0, 1).

Furthermore, the ϕi’s are real analytic away from the positions of the nuclei, i.e.,
ϕi ∈ Cω(R3\{R1, . . . , RL}). This was first proved in (the preprint version of) [20], for
solutions to the multiconfiguration equations (24)–(25) (see also [12]); it was conjectured
in [23], where smoothness (ϕi ∈ C∞(R3\{R1, . . . , RL})) was proved. Note also that if
ϕ = {ϕ1, . . . , ϕN } is a solution to (14) and if ϕ̃ satisfies hϕϕ̃ = εϕ̃, then ϕ̃ has the same
regularity properties as those of the ϕi’s discussed above.

The main result of this paper is the following theorem, which completely settles
the regularity properties at the positions R1, . . . , RL of the nuclei of all solutions to the
multiconfiguration equations (24)–(25) (including the Hartree–Fock equations (13)). We
denote by B3(R, r) ⊂ R

3 the ball of radius r > 0 with center at R ∈ R
3.

Theorem 1.2. Let {(cI ); {ϕ1, . . . , ϕM}} be a solution to the multiconfiguration
equations (24)–(25).

Then, for all j ∈ {1, . . . ,M} and k ∈ {1, . . . , L}, there exist r ≡ rj,k > 0 and real
analytic functions ϕ

(1)
j,k, ϕ

(2)
j,k : B3(Rk, r) → C, i.e., ϕ

(1)
j,k, ϕ

(2)
j,k ∈ Cω(B3(Rk, r)), such that

ϕj (x) = ϕ
(1)
j,k(x) + |x − Rk|ϕ(2)

j,k(x), x ∈ B3(Rk, r). (28)

Remark 1.3.

(i) For simplicity of notation, we have stated everything only in the spinless case. It will be
obvious that the proof of theorem 1.2 also works in the general case of spin q. It will also
be clear that the result also holds for solutions to the Hartree equations (18).

(ii) The result of theorem 1.2 immediately implies regularity results for the many-body
wavefunction � generated by (cI ) and {ϕ1, . . . , ϕM} (see (22)). For recent results on the
regularity properties of the true minimizer � (i.e., for the problem (4)) and of excited
states, we refer to [8, 9]. The proof of theorem 1.2 uses the Kustaanheimo–Stiefel
transformation, as applied in [9] to study these eigenfunctions of the Schrödinger operator
of atoms and molecules (i.e., solutions to (5)) near two-particle coalescence points.

Remark 1.4. Partial results on the asymptotic regularity at the positions of the nuclei of
solutions to Hartree–Fock equations have recently been given in [4]; more precisely, the
estimates of the form∣∣∂β

x ϕj (x)
∣∣ � Cj,k,β,εj,k

|x − Rk|1−|β|, (29)

for |β| � 1 and x ∈ B3(Rk, εj,k) for some εj,k > 0, were proved to hold for certain solutions
to the Hartree–Fock equations obtained by the so-called level-shifting algorithm [1]. We shall
not discuss this in detail here, but just point out that theorem 1.2 implies that any solution to the
Hartree–Fock equations (and, more generally, to the multiconfiguration equations) satisfies

6
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the estimate (29). This fact is relevant for the study in [3] of the use of tensor product wavelets
in the approximation of Hartree–Fock eigenfunctions. The result of theorem 1.2 is, however,
much stronger than (29).

Theorem 1.2 immediately implies similar regularity properties for the corresponding
(electron) density. More precisely, for � ∈ L2(R3N), define ρ ≡ ρ� by (recall that
X = (x1, . . . , xN) ∈ R

3N )

ρ(x) =
N∑

j=1

∫
R

3N

|�(X)|2δ(x − xj ) dX. (30)

For � ∈ ∧N
i=1 L2(R3), this becomes

ρ(x) = N

∫
R

3N−3
|�(x, x2, . . . , xN)|2 dx2 · · · dxN . (31)

For � a Slater determinant, ρ is given in (10); for � a product state (see (20)), ρ is also given
by (10), whereas for � a linear combination of Slater determinants of length N, built out of M
functions (see (22)), ρ becomes

ρ(x) =
M∑

j=1

nj |ϕj (x)|2, nj =
∑
I�j

cI
2. (32)

Since, for any solution of (24) and (25), the orbitals are real analytic away from the positions of
the nuclei, the same holds for the corresponding density ρ (i.e., ρ ∈ Cω(R3\{R1, . . . , RL})),
defined by (32) (since these are finite sums). The following corollary to theorem 1.2 completely
settles the regularity properties of ρ at the positions R1, . . . , RL of the nuclei.

Corollary 1.5. Let {(cI ); {ϕ1, . . . , ϕM}} be a solution to the multiconfiguration equations
(24)–(25), and let ρ be the corresponding electron density, given by (32).

Then for all k ∈ {1, . . . ,M} there exist rk > 0 and real analytic functions ρ1, ρ2 :
B3(Rk, rk) → R (i.e., ρ1, ρ2 ∈ Cω(B3(Rk, rk))), such that

ρ(x) = ρ1(x) + |x − Rk|ρ2(x) for all x ∈ B3(Rk, rk). (33)

Remark 1.6. Note that the corresponding question for the density ρ (given by (31)) of the
true minimizer of (4) as well as of excited states—i.e., solutions to (5)—remains open. In
this case, the density is known to be real analytic away from the positions of the nuclei (i.e.,
ρ ∈ Cω(R3\{R1, . . . , RL})) (see [7]), and partial results on the behavior in the vicinity of the
nuclei were obtained in [6, 10].

2. Proof of the main theorem

As mentioned in section 1, the proof of theorem 1.2 is based on the Kustaanheimo–Stiefel (KS)
transform. We will ’lift’ the multiconfiguration equations (24) to new coordinates using that
transform. The solutions to the new equations will be real analytic functions. By projecting to
the original coordinates, we get the structure result in theorem 1.2. The latter fact was proved
in [9] (see proposition 2.1 below).

The KS transform K : R
4 → R

3 is defined by

K(y) =
⎛
⎝y2

1 − y2
2 − y2

3 + y2
4

2(y1y2 − y3y4)

2(y1y3 + y2y4)

⎞
⎠ , y = (y1, y2, y3, y4) ∈ R

4. (34)

7
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It is a simple computation to verify that

|K(y)| := ‖K(y)‖
R

3 = ‖y‖2
R

4 =: |y|2 for all y ∈ R
4. (35)

Let f : R
3 → C be any C2-function, and define, with K as above,

fK : R
4 → C, fK(y) := f (K(y)). (36)

Then for all y ∈ R
4\{0}, (see [9, lemma 3.1]),

(�f )(K(y)) = 1

4|y|2 �fK(y). (37)

Proof of theorem 1.2. We prove the theorem in the case k = 1. We assume without loss of
generality (make a linear transformation in R

3) that R1 ≡ 0 ∈ R
3.

Assume that {(cI ); {ϕ1, . . . , ϕM}} solves the multiconfiguration equations (24)–(25).
Define

φk,� := (ϕkϕ�) ∗ 1

| · | , k, � ∈ {1, . . . , N}. (38)

Then (24) can be rewritten as

γi(−�x + V )ϕi +
M∑

j,k,�=1

Aijk�φk,�ϕj =
M∑

j=1

λijϕj , 1 � i � M, (39)

−�xφk,� = 4πϕkϕ�, 1 � k, � � M. (40)

Since V (x) = − ∑L
k=1 Zk|x − Rk|−1 is real analytic on R

3\{R1, . . . , RL}, (39) and (40)
show that {ϕi, φk,�}i,k,� is a solution of an analytic nonlinear elliptic system of PDEs
on R

3\{R1, . . . , RL}. It follows (from [25, 26] or the method in [15]) that {ϕi}i=1,...,M

and {φk,�}1�k,��M are real analytic in R
3\{R1, . . . , RL}. This is the standard proof that

solutions to the multiconfiguration equations (24)–(25) are real analytic away from the origin
in R

3 [12, 20].
Recall that R1 = 0 ∈ R

3. Note that (39)–(40), (37) and (35) imply that

γi(−�y + 4|y|2VK)(ϕi)K +
M∑

j,k,�=1

Aijk�4|y|2(φk,�)K(ϕj )K − 4|y|2
M∑

j=1

λij (ϕj )K = 0,

1 � i � M, (41)

−�y(φk,�)K = 16π |y|2(ϕk)K(ϕ�)K, 1 � k, � � M, (42)

with VK, (ϕi)K and (φk,�)K defined by (36).
Since the functions involved do not have sufficient regularity for (37) to be applied directly,

the above deduction of (41)–(42) is slightly incomplete. One can make a rigorous proof using
lemma A.1 and remark A.2 in appendix A. This was carried out in [9, pp 6–7] in a similar
setting, and details are therefore omitted here.

Since (using (35))

4|y|2VK(y) = − 4Z1 −
L∑

k=2

4Zk|y|2
|K(y) − Rk| (43)

is real analytic in a neighborhood of 0 ∈ R
3 (recall (35)), (41) and (42) show that

{(ϕi)K, (φk,�)K}1�i,k,��M (44)

8
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is a solution of an analytic nonlinear elliptic system of PDEs on some ball B4(0, R) ⊂ R
4. As

before, it follows that

{(ϕi)K}1�i�M and {(φk,�)K}1�k,��M (45)

are real analytic in B4(0, R) ⊂ R
4. Proposition 2.1 below, proved in [9], then implies the

statement of theorem 1.2. This finishes the proof of the theorem. �

Proposition 2.1 ([9, proposition 4.1]). Let U ⊂ R
3 be open with 0 ∈ U and let ϕ : U → C

be a function. Let U = K−1(U) ⊂ R
4, with K : R

4 → R
3 from (34), and suppose that

ϕK = ϕ ◦ K : U → C (46)

is real analytic.
Then there exist functions ϕ(1), ϕ(2), real analytic in a neighborhood of 0 ∈ R

3, such that

ϕ(x) = ϕ(1)(x) + |x|ϕ(2)(x). (47)
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Appendix. The Kustaanheimo–Stiefel transform

The KS transform turns out to be a very useful and natural tool for the investigation of
Schrödinger equations with Coulombic interactions (we refer to [9] for references on this). In
particular (35) and the following lemma are important for our proofs. Most of the facts stated
here are well known (see e.g. [14, appendix A]).

Lemma A.1 ([9, lemma 3.1]). Let K : R
4 → R

3 be defined as in (34), let f : R
3 → C be

any C2-function, and define fK : R
4 → C by (36).

(a) Then (37) holds:

(�f )(K(y)) = 1

4|y|2 �fK(y), y ∈ R
4 \ {0}. (A.1)

(b) Furthermore, let U = B3(0, r) ⊂ R
3 for r ∈ (0,∞]. Then, for φ ∈ C0(R

3) (continuous
with compact support),∫

K−1(U)

|φ(K(y))|2 dy = π

4

∫
U

|φ(x)|2
|x| dx. (A.2)

In particular,

‖|y|φK‖2
L2(K−1(U)) = π

4
‖φ‖2

L2(U). (A.3)

9
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Remark A.2 ([9, remark 3.2]). By a density argument, the isometry (A.3) allows us to extend
the composition by K given by (36) (the pull-back K∗ by K) to a map

K∗ : L2(U, dx) → L2(K−1(U),
4

π
|y|2 dy)

φ �→ φK

in the case when U = B3(0, r), r ∈ (0,∞]. This makes φK well-defined for any φ ∈ L2(U).
Furthermore, if φn → φ in L2(U), then, for all g ∈ C∞(K−1(U)) (g ∈ C∞

0 (K−1(U)), if
r = ∞),

lim
n→∞

∫
K−1(U)

g(y)(φn)K(y) dy =
∫

K−1(U)

g(y)φK(y) dy. (A.4)

This follows from Schwarz’ inequality and (A.3),∣∣∣∣
∫

K−1(U)

g(y)((φn)K(y) − φK(y)) dy

∣∣∣∣
�

(∫
K−1(U)

|g(y)|2
|y|2 dy

)1/2

‖|y|((φn)K − φK)‖L2(K−1(U))

=
√

π

2

(∫
K−1(U)

|g(y)|2
|y|2 dy

)1/2

‖φn − φ‖L2(U) → 0, n → ∞.

Here the y-integral clearly converges since g ∈ C∞ (R4) (g ∈ C∞
0 (R4), if r = ∞).

© Søren Fournais, Maria Hoffmann-Ostenhof, Thomas Hoffmann-Ostenhof and Thomas
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